
Towards Model Driven Architecture and Painless Persistence with Airlift, UML and
Hibernate

Milan Zimmermann, Airlift LLC

Last revision September 20, 2005

Summary: Benefits of a “data model first” approach to development are well
established. In many projects we worked on, we have encountered a need for a consistent
domain model driven approach with the requirement of the persistence to be a relational
database. While many technologies (Hibernate, EJB) address this problem, they do not
provide a seamless easy way to drive the development process from a Domain Entity
Model (DEM) designed in UML all the way to persistence. Hibernate is an excellent
Object-Relational(OR) mapping tool, however, the task of creating and managing details
of Hibernate OR mapping XML and corresponding Java classes may become
overhelming for large projects. The LGPL Airlift framework provides, among other
features, a Model Driven Approach (MDA) and tools which allow to design the Domain
Entity Model in UML, including inheritance, generate all Hibernate OR mapping details,
and support evolution of the Entity Model by separating any generated classes and
interfaces from business classes and interfaces.

Available formats:

HTML
PDF
doc
Open Office 2.0

Fast Introduction: The goal of this tutorial is to present the Airlift library and tools
which support MDA development, from UML Domain Entity Model to persistence and
business logic. Let us start by jumping ahead and taking a look at the AirliftPetStore
Entity Model (Customers and PurchaseOrders class diagrams). A few notes:

• The Person / Customer and Person / SupplierContact generalizations (extensions)
will illustrate how inheritance is handled.

• The association between Person and Phone, which will exist also between
Customer and Phone because associations, while uniquely defined by enumerates
in Airlift, are implemented by methods (add/remove from association) that are
simply inherited.

• The <<EntityType>> Stereotype on top of each Entity, they are required for each
entity to be converted from the UML.

• The OR and Hibernate tags such as LazyLoadTo, CascadeTo, FKTo etc, control
some details in the way Hibernate mappings are generated. They are only needed
if a detail control is required over the generated relational tables. We will discuss
them later.

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/Towards Model Driven Architecture With Airlift.odt
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/Towards Model Driven Architecture With Airlift.html
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/Class_Diagram__PurchaseOrders.jpg
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/Class_Diagram__Customers.jpg
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/Towards Model Driven Architecture With Airlift.doc
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/Towards Model Driven Architecture With Airlift.pdf

Tutorial Content: In this tutorial, we will build a small subset of the above
AirliftPetStore UML Entity Model, and illustrate the Airlift MDA approach by
generating all java and Hibernate classes using the AirliftUMLConverter, creating the
target database using Airlift Hibernate tools, and coding a simple no-gui test application
against the target database.

Tutorial Steps:

TOWARDS MODEL DRIVEN ARCHITECTURE AND PAINLESS
PERSISTENCE WITH AIRLIFT, UML AND HIBERNATE......................................1

TUTORIAL STEPS: .. 2
INTRODUCTION TO THE ENVIRONMENT: UML AND PERSISTENCE TOOLS AND LIBRARIES CURRENTLY
SUPPORTED BY AIRLIFT..2

Airlift plans to support following tools:.. 2
INSTALLING SOFTWARE AND TOOLS USED IN THIS TUTORIAL... 3
CORE SECTION: BUILDING THE AIRLIFTPETSTORESUBSET UML USING THE AIRLIFT UML PROFILE.
..4

Steps to build AirliftPetstoreSubset:..4
DETAIL DESCRIPTION OF TAGS SUPPORTED BY THE AIRLIFT UML CONVERTOR............................10
USING THE AIRLIFT UML CONVERTOR TO GENERATE JAVA CLASSES, INTERFACES AND HIBERNATE
XML MAPPING FILES, OVERVIEW OF GENERATED CODE.. 10

Running the Airlift UML Convertor.. 11
Overview of generated code.. 12

RUNNING THE AIRLIFT DEPLOY TOOL TO CREATE THE TARGET DATABASE...................................13
CODING AND RUNNING A SMALL JUNIT TEST APPLICATION AGAINST THE AIRLIFTPETSTORESUBSET
DOMAIN ENTITY MODEL..15
CONCLUSION:...17
FUTURE DEVELOPMENT:..17

Introduction to the environment: UML and persistence tools and
libraries currently supported by Airlift.

In this section we introduce the tools tested and currently supported by Airlift.

Airlift plans to support following tools:

At this point, following tools have been tested and used by customers:
• MagicDraw version 9.0 and 9.5 files saved as “rich” XMI 1.1
• Hibernate 2.0, 3.0

Any tool which allows saving the UML diagram in XMI 1.1 should work. Currently,
Airlift users use MagicDraw version 9.0 and 9.5 (http://www.nomagic.com), saving the
UML in XMI 1.1 “rich” format, which is the only combination that has been tested.
Poseidon (http://www.gentleware.com) may work but was not tested. ArgoUML
(http://argouml.tigris.org/) is currently not supported because the highest version of XMI
it can save is 1.0. We want to support an open source or free source UML tool and
looking into ArgoUML and Omondo/EclipseUML
(http://www.omondo.com/download/free/eclipse_3x/index.html#E3.JAR) but need to
clarify EclipseUML license.

Generating EJB and JDO is planned.

We would like to extend the tool support as quickly as possible and help anyone in
testing and extending list of source and target tools, mainly free source and open source
tools.

Installing software and tools used in this tutorial.

In this section, we list the tools used in this tutorial and provide download links so reader
can follow this tutorial hands on.

However, this tutorial provides:

• The tutorial UML diagram as image.
• Source files generated from the entity model and the sample application in

a separate “src” directory.

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/AirliftPetstoreSubset.png
http://argouml.tigris.org/
http://www.gentleware.com/

Consequently, you only need to install the tools below if you wish to follow this tutorial
“hands-on” step by step.

External tools:

To follow this tutorial “hands-on” step by step, you will need to install:
• MagicDraw 9.5 community edition, downloadable from

http://www.magicdraw.com/main.php?ts=download_demo&cmd_show=1&menu
=download

• MySQL community edition downloadable from http://dev.mysql.com/downloads/
Any database will work, but the tutorial provides a MySQL jar to run hands-on.

• Eclipse 3.1 downloadable from http://www.eclipse.org. The tutorial code can run
in any IDE such as Netbeans or IDEA or from command line, but only Eclipse
workspace is provided as convenience.

• The Java IDE http://java.sun.com/j2se/1.4.2/download.html if not installed.
• Hibernate 2.0 is not necessary as we provide Hibernate jars with the Eclipse

workspace

Tutorial Software:

• Eclipse Workspace in the eclipse-workspace.zip file includes everything to run
the tutorial code except for a relational database which needs to be installed
separately. To run the Airlift UML Generator and the sample application, unzip
this file, start Eclipse 3.1 and select “eclipse-workspace” as the workspace. This
directory also contains the Airlift source and classes jars.

• The entity model build in this tutorial.
• The “tutorial/src” directory with both generated files and sample application.

This is simply a copy from inside the “eclipse-workspace”, provided for those
who do not wish to run “hands on”and simply review all code.

Core Section: Building the AirliftPetstoreSubset UML using the
Airlift UML Profile.

In this section, we describe how to build the Domain Entity Model for
AirliftPetstoreSubset. This is a small subset of the Airlift Petstore linked as an image in
“Fast Introduction”.

Steps to build AirliftPetstoreSubset:

• From MagicDraw, create a new project by clicking File  NewProject.

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/uml/AirliftPetstoreSubset.xml.zip
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/uml/AirliftPetstoreSubset.xml.zip
http://eclipse-workspace.zip/
http://java.sun.com/j2se/1.4.2/download.html
http://www.eclipse.org/
http://dev.mysql.com/downloads/
http://www.magicdraw.com/main.php?ts=download_demo&cmd_show=1&menu=download
http://www.magicdraw.com/main.php?ts=download_demo&cmd_show=1&menu=download

• All Airlift-specific features must be provided by the AirliftUMLProfile.xml.zip
profile. This is achieved by importing the profile into the UML tool. Click File
Import and in the dialog brought up, select the AirliftUMLProfile.xml.zip and
click “Open”. This will effectively import the AirliftUMLProfile.xml.zip and
make the Airlift-specific tags and stereotypes ready to use.

• Once “imported”, you should see AirliftProfile under Data on the left tree in

MagicDraw as shown here:
• The imported AirliftProfile contains model for all entity types and Tags supported

by the Airlift UML Converter. They will be discussed in detail later, at this point
only a note: In the steps below, when adding entity types, field types and tags to
the UML, all of them must be from the above profile. This will ensure the
convertor will understand those features and know to how to convert them.

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/uml/AirliftUMLProfile.xml.zip

• Save project as AirliftPetstoreSubset, making sure to save in XMI 1.1 format

“rich”:
• We start building the entity model by adding entities, attributes (fields) and

associations. We will create a subset of the PetStore model which uses limited
control over specific naming of the target database tables by adding tags that
control foreign key names, lazy loading etc (FKFrom, FKTo, LazyLoadFrom
LazyLoadTo etc).

o Create a Class Diagram (DiagramsClass Diagram) and name it
Customers. Ensure the Class Diagram is added under “Data” not “Airlift
Profile” as shown by highlighted the Data node:

o Drag the Class icon on the Class Diagram and name it Person.
o Double click on the Person Node and select Stereotypes. On the left, select

EntityType and click on the right arrow symbol in the middle.

This will move the EntityType stereotype to the right pane, resulting in

o Start adding attributes by clicking on Attributes and Add. Provide
Attribute name and make sure that the type selected is from the
AirliftProfile, as indicated in the Type: String[AirliftProfile].

o The resulting first entity:
• Add other entities, fields and associations to the UML project, making sure each

entity is of type <<EntityType>>. The Hibernate target Airlift UML Converter
supports converting UML Entities and Fields (Attributes) by generating target
persistable classes, controlling the Hibernate target using UML Tags on
associations and classes.

• Let us assume we added a Person and Phone entities and a association named
“phone” between them. At this point, we will discuss two details:

o A UML class that is given stereotype <<OptionCode>> is treated in a
special way by Airlift. It is assumed it’s values will not change often, they
reside in a standalone option code entity and are cached. The only allowed
field on such class is “storedAs” and allowed types are String and Integer
(this represents how they are stored). In the UML, note how the
phoneType field is defined.

o Adding a AirliftProfile UML tag named “cascadeTo” on the “phone”
association. The reason we show this is to clarify how a AirliftProfile tag
is defined. Select the desired tag as shown here,

 then click on

“Create Value” and type in the desired value (“all” in this case) as shown

here .
• The final subset of the AirliftPetstore UML we will write code against in

MagicDraw 9.5 and a screenshot:

• Apart from <<OptionCode>> discussed above, let us notice a few things:
o The “reverse” tag on the PersonPhone and PersonAddress

associations. They allow for Person to have accessors from Phone and
Address.

o Extension (Generalization) use, Customer and SupplierContract extending
Person. Both Customer and SupplierContract will inherit associations to
Phone and Address.

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/uml/AirliftPetstoreSubset.xml.zip

o There is no UML association line drawn from Customer to Profile,
however, Customer has “customerProfile” field of type Profile. This is
similar to having an association from Customer to Profile that is
“multiplicity 1” on Customer, and “multiplicity 0,1” on Profile, but not the
same: The Profile will be implemented “inline” in Customer, such that
Profile fields will be added to the Customer table. Obviously this is only
possible for ONE_TO_ZERO-OR-ONE associations, and such setup can
increase performance in some situations.

Having created the domain entity model, we will first (briefly) discuss Airlift UML tags
and stereotypes, and then use the Airlift UML Converter to convert the entity model into
Java code and Hibernate mappings.

Detail description of tags supported by the Airlift UML
Convertor.

In this section, we will discuss Tags supported by the Airlift UML Converter. Airlift
UML tags and stereotypes are defined in the AirliftUMLProfile.xml.zip. In the above
model, we have seen tags such as “reverse” which manages association in reverse
direction, and “cascadeTo” which manages how the “To” entity is being deleted on the
“From” entity delete.

In general, with UML tags, designer can control association accessor types (Set, List,
Map), concrete column names for foreign keys, cascading delete, lazy loading and other
OR mapping features and features supported by Hibernate. While none of these tags are
required and reasonable defaults are provided by either Airlift or Hibernate, tags are a
powerful feature providing fine control.

All Airlift UML tags and stereotypes, along with their description, default and allowed
values are listed in the Tags documentation . Please review it for details of supported tags.

Using the Airlift UML Convertor to generate java classes,
interfaces and Hibernate XML mapping files, overview of
generated code.

In this section, we will explain how to use the Airlift UML Convertor to convert UML
to source code, overview the generated code, and discuss role of each generated class, as
well as how this model supports maintaining your business changes.

The Airlift UML Convertor (Hibernate target) is the utility which takes the UML file
(XMI 1.1 format), such as the AirliftPetstoreSubset we built in previous steps, and

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/uml/AirliftPetstoreSubset.xml.zip
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/AirliftUMLConverterHibernateSpecificTagsAndAssociations.odt
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/AirliftUMLConverterHibernateSpecificTagsAndAssociations.odt
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/uml/AirliftUMLProfile.xml.zip

converts it into a set of Java files and Hibernate mapping files, which support persistence
in the Airlift framework. This utility, along with Airlift persistence classes, is the core
that allows for applications using Airlift to be based on a Model Driven approach to
development.

Running the Airlift UML Convertor

The utility can be run by running “main” of utility class
airliftj.util.entityModelUMLToXML.UMLEntities2Hibernate, found in the airlift_src.jar
in the eclipse-workspace of this tutorial. This utility suports command line arguments that
allow to specify the location of the UML file, location of the generated files, as well as
properties which control the generated code (for example, whether the target relational
tables will use char or varchar). This utility will be soon run from Eclipse plugin, so for
now we will concentrate on describing a most common arguments.

For those following the tutorial step-by-step in Eclipse:
• Start Eclipse, and select the “eclipse-workspace” provided. Click “RunRun” in

the menu

• There are 4 Arguments used: ../../uml AirliftPetstoreSubset.xml.zip src
petstore.entity airliftj.persistence . (All path strings are relative to the “airlift-
workspace/tutorial-project” directory.)

o first ../../uml AirliftPetstoreSubset.xml.zip defines location of the UML
o second src defines directory where the files will be generated into
o third petstore.entity is the package name of the generated entities

o fourth airliftj.persistence is name of the airlift persistence package (more
on it later).

• Click on the Run button to convert the UML entity model. The log should be
similar to this log.

• If you receive an error running the converter, you may want to look at this likely
error causes, NoteOnUMLConversionErrors.txt

• Right-click on the “tutorial-project” in Package Explorer, and select “Refresh”,
this will ensure the generated files are read by Eclipse.

Overview of generated code

For convenience of a quick review, the generated Java classes and Hibernate XML
mapping were copied into “tutorial/src” directory. For those following hands-on they are
in the eclipse-workspace as well.

Each UML Class has been converted into 4 java files and 1 Hibenate mapping
“.hbm.xml” file (there is no “hbm.xml” file generated for classes that have a superclass,
the superclass’s “hbm.xml” file contains all mappings. As an example, let us look at the
UML Person class. Here is description of each generated file and it’s role in the Airlift
framework.

• The “entity interface” petstore.entity.gen._intfc_Person.java is an interface with
2 roles.

o By extending the Airlift entity interface, airliftj.persistence.Entity, it
allows Person to participate in the Airlift persistence framework. This
represents the “entity interface” role.

o By defining accesors for each field in the UML Person class, and for each
association there, it serves as the entity model API.

• The petstore.entity.gen._class_Person.java provides skeleton entity
implementation of the “entity interface” , or the 2 roles defined by
_intfc_Person:

o By extending the airliftj.persistence.BaseEntity it provides the skeleton
implementation of any Airlift persistence framework participant.

o By providing implementation for all accessors defined in the UML Person
class, it serves as the entity model implementation.

• The petstore.entity.Person.java is the “business interface” of Person, a direct
extension of _intfc_Person. Person.java has the role of allowing the “business
entity implementation” to evolve without disrupting existing business-specific
code changes. Please see PersonImpl.java for more discussion.

• The petstore.entity.impl.PersonImpl.java is the “business implementation” of
Person, extension of _class_Person. Any business logic related to Person’s role in
the application should be implemented in the “business implementation”. Also,
this allows for the entity model to evolve without disrupting existing business-
specific code changes.

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/impl/PersonImpl.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/Person.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/gen/_class_Person.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/gen/_intfc_Person.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/NoteOnUMLConversionErrors.txt
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/LogOfUMLConverterRun.txt

o Let us discuss an example. Let’s assume an initial entity model was
converted, and the resulting classes used in an application. Along the way,
a need to add some business logic came up. Let us make it simple, by
assuming this business requirement is that the middle name always need to
be empty or one letter. This would be implemented by overriding the
“setMiddleName(String pMiddleName)” method of ._classPerson. Let’s
say that later still, a field need to be added to the Person class. This is
performed by adding a field in the UML entity model and re-converting.
The business classes are not overriden in this process and existing “middle
name functionality” is preserved. If the last change involved removing a
field, no problems arise unless this old field is refererenced somewhere in
the business code, in which case a compile error would alert to the fact
that removed field is used in business code.

o This seamless evolution of entity model is allowed by two features: first,
the separation of the “entity” and “business” implementation and
interfaces, second, the simple fact the implementation classes are not
overwritten during reconversion.

o A good practice is to write code against the “business interface”
Person.java and put implementaition changes in the “business
implementation” PersonImpl.java.

o Upon re-conversion, the “business classes” Person.java and
PersonImpl.java are not overwritten, the “entity classes” intfcPerson,
classPerson are overriden, the latter should not be modified, because
changes are lost. This is signified by their presense in the package name
ending with “gen”.

•
• The petstore/entity/Person.hbm.xml contains all generated Hibernate mappings

for Person. Details are controlled by the tags discussed in previous sections. We
find that especially in more complex entity models, ability to fully generate (and
regenerate on changes!) Hibernate mappings is very valuable and increases
dynamicity of the development process..

• The petstore.entity.gen._registry_allEntities.java is one “common” file per UML.
It’s role is to register all persistent classes with the Airlift
PersistentObjectRegistry.

Running the Airlift Deploy Tool to create the target database.

In this section, we will explain what is the Airlift Entity Model Deployment Tool and
how to use it.

Airlift Entity Model Deployment tool is a utility (soon to be generated , you can check
the source code in PetstoreDeployTool .java) which can create all database tables
corresponding to entities defined in _registry_allEntities.java (which in turn correspond
to all Classes and Associations in the UML entity model. It is a wrapper using Hibernate
utilities.

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/Person.hbm.xml.xhtml
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/util/PetstoreDeployTool.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/util/PetstoreDeployTool.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/gen/_registry_allEntities.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/impl/PersonImpl.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/Person.java

The Deploy Tool must run at least once before running any application that uses the
database as modelled in the UML converted in previous steps.

Configuration Files required to run the Deployment Tool:

• Airlift-config.xml defines which EntityManager factory is used
• Hibernate.properties defines database URL and driver, login and password. If

you follow these instructions step by step, please note that at this point, the
MySQL database must be installed, and by default be named “test” with
login=”test” and no password. If your database uses different configuration,
please modify hibernate.properties.

• Log4j.properties

Java files required to run the Deployment Tool:

• PetstoreEntityManagerFactory.java : makes persistent objects and command
objects types (entity types).

• Petstore_HQLBasedCommandRegistry.java : registers query commands. This is
only required later inbuilding an application.

• Petstore Persistent Object Registry : generated, registers persistent object types.

If you are following the tutorial step by step, you can run the deployment tool:

• First click RunRun

•

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/airlift-config.xml.xhtml
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/gen/_registry_allEntities.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/cmd/Petstore_HQLBasedCommandRegistry.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/entity/impl/PetstoreEntityManagerFactory.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/log4j.properties
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/hibernate.properties

• Next, you should see a log with some INFO but no errors and exceptions, similar
to this log.

• Once the run finishes, you can use a database utility to check what tables were
created. As an example, after running the tool, there will be a database table
named “person” with following fields:

id bigint
emailAddress varchar
title varchar
suffix varchar
firstName varchar
middleName varchar
lastName varchar
emailNewsletter tinyint
registered date
bannerPreference varchar
supplierCompanyName varchar
myListPreference varchar
preferredLanguage varchar
updateSequence int
CONCRETE_TYPE varchar

• A few notes are in order:
o Note that the “person” table contains fields from Person as well as

Customer. This is how Hibernate performs Object-Relational mapping of
inherited entities.

o The “person” table also contains fields from the Profile entity because
Profile was modelled “inline” – inside the Customer entity without an
association, simply as “customerProfile:Profile”.

o Note that the option_code table contains data for AddressType
<<OptionCode>> stereotype (Home and Work address), inserted from the
PetstoreOptionCode.

Creating the database tables concludes discussion of the Airlift Entity Model Deploy
Tool, and we will proceed writing a simple application against the Entity Model.

Coding and running a small Junit test application against the
AirliftPetstoreSubset domain entity model.

In this section we will create an exteremely simple application (a test) that will show how
data can be added and accessed in our Domain Entity Model, as generated from UML
into Airlift entities as persisted by Hibernate.

We create a simple unit test application which will create and persist 3 persons with
addresses. For those following step by step, this test can be run as follows:

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/LogOfDeployTool.txt

When finished, you should see 3 rows in the “person” table and 3 rows in the “address”
table (associated via address.PERSON_ID).

A few notes about the test classes and how they show persistence entity management in
Airlift

• The test class is TestPetstore.java with the core method suiteDo()
• The core test file is TestPetstorePerson.java with the two core methods

public void testPersonQuery_LoadTestData()
{
ResponseSummary response =
this.getConversation().executeDemarcationBlock(new DemarcationBlock()
{
public void executeWithDemarcation()

{
insertPerson(smith, "smith@airliftj.org", "Tennesee", "Nashville");
insertPerson(miller, "miller@airliftj.org", "Alabama","Birmingham");
insertPerson(carpenter, "carpenter@airliftj.org", "Ontario", "Oakville");
} // NOTE: automatic commit happens at the end of this block..
// or rollback if an exception was thrown inside this block
// this assumes of course, that there was no transaction
//already running when we got here.

},DemarcationSettings.SETTINGS_TRANSACTION_REQUIRED);
}
}

 private void insertPerson(String lastName, String email, String state, String city)
{
// delete any Person in database by name
while(deletePersonIfExists(lastName));
Person person = (Person)getEntityManager()
 .createEntityAndAssignIdentity(Person.class);
person.setLastName(lastName);
person.setEmailAddress(email);
getTransactionManager().managePersistentEntity(person);

// Create a single Address for this Person.
Address address =(Address)getEntityManager()
 .createEntityAndAssignIdentity(Address.class);
address.setState(state);
address.setCity(city);

file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/test/TestPetstorePerson.java
file:///C:/airlift/workspace-phaseII/airlift-project/airliftj/airlift-website/airliftj/xdocs/technology/mda/tutorial/src/petstore/test/TestPetstore.java

Set addresses = new HashSet();
addresses.add(address);
person.setAddress(addresses);
getTransactionManager().managePersistentEntity(address);
}

• The insertPerson method shows how to create a persisted entity in the Airlift
framework.

• The code is written against the business interface Person and Address, not the
business implementation PersonImpl and AddressImpl.

• Very briefly, each persistable entity need to createEntityAndAssignIdentity() and
managePersistentEntity() but that is subject for another tutorial, showing a more
“real” application, which is making use of the Application and Component layer.

Conclusion:

This tutorial attempted to present a complete MDA based development cycle using the
Airlift framework, from a EntityModel defined in UML, through fully automated Object
Relational mapping, all the way to writing an application and persisting data against the
Entity Model. Perhaps one day, we will be developing in (something similar to) UML as
envisioned by the MVC inventor Trygve Reenskaug in his BabyUML research , in the
meantime, a few small steps.

Future Development:

Plans for future is in general terms, increased pluggability on both UML and persistent
ends, and making use of at least following tools:

ArgoUML front end
EJB back end
JDO back end

http://heim.ifi.uio.no/~trygver/2005/babyuml/newdiscipline.pdf

