
Airlift Framework for Java

Technology Overview

May 2005



Goals and Objectives of the Airlift Framework

The overriding objective of the Airlift Framework for Java can be stated as 
follows:

To promote, enable and maximize the portability, reusability 
and longevity of developed application and business logic. 
This includes persistence models, persistent objects and related 
artifacts, coded user interaction and validation logic, business 
process logic, access control logic, and persistent data processing 
logic.

This stated high-level goal can be broken down into the following 2nd tier 
objectives:

1. To promote and enable a clean separation of presentation logic 
from underlying application/business logic, such that the choice 
of existing or emerging presentation technologies, at various points 
along the lifespan of a developed application, can be made with 
minimal impact upon underlying application logic.  Furthermore, 
multiple varying presentation technologies and configurations 
should be deployable simultaneously using the same shared 
application/business logic.

2. To promote and enable a clean separation of 
application/business logic from underlying object persistence 
technologies, such that the choice of existing or emerging 
persistence technologies, at various points along the lifespan of a 
developed application, can be made with minimal impact upon 
application logic.  Furthermore, multiple varying persistence 
technologies and configurations should be deployable 
simultaneously using the same shared application/business logic.

3. To promote and enable a model-driven approach to development 
and maintenance of an application’s persistent objects and 
related object persistence mappings and infrastructure.

4. To promote and enable a model-driven approach to development 
and maintenance of an application’s core user interaction and 
business process objects, including interaction model 
composition, declarative query and service integration, access 
control point definitions, and generation of presentation layer 
controller mappings to application layer components.



Areas outside of the scope of Airlift

1. Airlift does not seek to provide or replace core presentation 
technology, but instead leverages third-party technologies for 
implementation of supported user interfaces through controller 
interfaces to the application layer. These technologies include the 
Struts Framework, Java Server Faces (JSF) technologies, the Java 
Swing (rich-client) API, and in future releases possibly SWT, WML, 
(and for web-service interfaces) SOAP, etc.

2. Airlift does not seek to provide or replace core persistence 
technology, but instead leverages third-party technologies for 
implementation of object persistence through persistence layer 
interfaces for use by the application layer. These technologies 
include the Hibernate version 2, Hibernate version 3, and in future 
releases, EJB 3.0, JDO, etc.

3. Airlift does not seek to provide a “pure POJO” environment.  
Because of the heavy-weight and intrusiveness of first and second 
generation J2EE technology (EJB 1.x and 2.x containers 
specifically), the industry seems to have reacted now with a 
pendulum swing toward what one might call “POJO Nirvana”.  
While the Airlift team has been focusing on light-weight containers 
for many years and has intentionally avoided reliance on EJBs, 
Entity Beans, and heavy weight containers, we do not hold that 
POJOs are the answer to all the world’s development problems. 
Just as XML became the buzz in the late 90s and was soon being 
over used and extended past it’s practical, we think it is possible 
that now POJOs are being over emphasized to the point that 
technology developers are going to great lengths and building 
complex behind-the-scenes “code-generation magic” in order to 
make POJOs enterprise capable.  We are suggesting that balance 
is in order with respect for POJOs, just as balance has proven to 
be in order with respect to XML.



Patterns, Methodologies and Best Practices within Airlift

1. Compile-time checking is emphasized.  Instead of relying upon 
external XML-based configuration and application integration meta-
data (as does EJB, Spring, and other frameworks), Airlift makes 
intentional use of generated and/or hand-written Java code to wire 
application components together.  The compile-time checked nature of 
Java code allows the developer to detect and correct deployment and 
configuration settings at coding-time or build-time instead of having to 
wait until the application is deployed and executed to discover 
configuration errors.  While some external configuration is necessary 
(primarily in the form of the airlift-config file for example), external 
configuration and XML “application wiring” is minimized by design.

2. Use of XML meta-data is intentionally minimized.

3. Annotations and AOP will be selectively integrated.  While the 
emphasis in Airlift will remain upon explicit, compile-time checked Java 
code, some strategic use of Annotations and Aspect Oriented 
Programming constructs will be introduced in select areas.  For 
example, the use of annotations and AOP will be introduced as an 
alternative approach to the placement of transactional demarcation 
boundaries around Component methods which may require or 
mandate an active transaction block as advice for the method call, etc.  
In these cases the framework will provide the needed advice 
implementations and supporting meta-data needed for implementation 
using the chosen underlying AOP technology (JBoss AOP, etc).

4. Model-driven “object graph navigation” artifacts are auto-
generated and utilized for application “wiring”.  Such artifacts can 
be used to create compile-time checkable declarative paths through 
graphs of persistent objects (EntityGraphs), app-layer model 
(Component) hierarchies, and implementation-independent Query 
graphs.  For example, the UML Entity Model generator auto-generates 
static navigation instances which represent Entity fields and 
associations.  These objects can then be chained together in Java 
code in order to declaratively map components and sub-components 
(e.g. Table Columns, Edit form fields, etc) down through complex 
Entity Graphs to the field level. If changes are made to an application’s 
model such that coded entity graph paths are no longer valid, then the 
Java compiler will immediately detect and flag any application 
configuration code which utilizes object navigation paths which have 
either changed or been removed.  In contrast, XML-based meta-data 
which has become out of date by referencing removed or altered 



classes, entities, etc, would probably not be detected as incorrect until  
a runtime exception is thrown.

5. Presentation Layer implementations are thought of a “faceplates” 
for application Components.  Imagine if you will a car stereo system 
which has a removable face-plate.  The face-plate is the Presentation 
Layer and the stereo component sans-face-plate is what the 
Application Layer component hierarchy looks like.  All the switches, 
buttons, and LCDs are there, but are only operational and functional 
when some face-plate is attached.  However, many completely 
different looking face-plates can be attached, and entirely new ones 
invented for use on any component.

6. “Dynamic Presentations” are highly valuable.  Furthermore, it is 
possible to create dynamic face-plates which morph themselves 
automatically to provide all the buttons and readouts that are provided 
by an underlying component.  We call this an auto-generated 
presentation implementation because it completely builds up a default  
presentation to match, button-for-button and switch-for-switch, with 
each underlying app-layer component it discovered and interrogates 
for its features.

7. Unit tests are just another presentation layer implementation.  A 
unit test is a form of face-plate, as well as a set of JSF components, a 
set of Struts actions and forms, as well as a dynamically runtime-
generated Swing GUI.  Unit test should obviously fully exercise the 
buttons, switches, readouts, and inputs of the Components  they are 
designed to test.

8. Application layer focus.  Our focus in Airlift is not the design, 
creation, layout, or selection of face-plates, that is left up to the various 
UI designers using various technologies.  Our focus is on designing, 
modeling, coding, and unit testing a robust set of app-layer,” faceless” 
components which are intelligently integrated, highly reusable, and 
pluggable into various use-cases across potential suites of  
applications.

Integration with Java Technologies

(todo)



Component Functionality Matrix

Aspects \ Component Classes          Component  Hierarchy
           
Content Caching          Component
Content Assignable            CompositeComponent
Session Identity /Component Key               SelectableComposite
Management by AppSession                 MenuItem/Row/TreeNode
Presentation Entry Point          
Compositing / Sub Components          Component
Savable /saveChanges() impl            FieldBasedComponent 
Conversation Propagation              ValueSelectionField
State History Management / 
Awareness              ValueEditField
State Maintained Across 
Conversations          
Context Sensitive          Component
Context Propogation            CompositeComponent
Label / Title              ManagedComponent
ToolTip                ContentCachingComponent
GetSetValue                  StateNavigableComponent
EntityFieldWrapper                   TableComponent
Is Selected                   FormComponent
Option List                     SearchForm
ValidationStatus                     EditForm
Actions                   PagingResultsList
Access Control                CustomComponents

  
  Component
    CompositeComponent
      ManagedComponent
        SearchResultsComposite
        ListDetailComposite



Comparison with other frameworks and related technologies.

The following spreadsheet is an attempt to compare the Airlift framework with other frameworks and APIs including the Spring framework, and EJB 
2.x and  3.x.  As there are some (unknowns at least to the author) with EJB 3.0 etc, there are some guesses and “?” where insufficient information 
was readily available at this writing.  Updates will be forthcoming.

Framework/API Feature Comparison AirliftJ Spring EJB 2.x EJB 3.x
     

Transactional Support
  Declarative Transaction Demarcation through XML NO YES YES ?
  Declarative Transaction Demarcation through Annotations PLANNED (through AOP) YES (Spring AOP) NO YES
  Declarative Transaction Demarcation through Callback 
wrapper YES YES NO ?
  Declarative Transaction Demarcation on Actions YES  
  Compile-time checking of Transaction Demarcation 
settings YES NO (in most cases) NO

checked 
annotations?

  Two-phase Commit Support PLANNED (JTA TransMgr) YES (through JTA) requires JTA YES (through JTA)
  Conversion of Exceptions to Transaction Rollback YES YES YES YES
  Unchecked Exceptions bubble to Transaction Blocks YES YES ? YES?
  Explicit Rollback support YES YES YES YES
  Hibernate 2 support YES YES  
  Hibernate 3 support YES YES YES
  JDO support as needed YES
  JTA support PLANNED (JTA TransMgr) YES YES YES
  Others (Toplink, etc) as needed YES
  Distributed Transactions must use JTA must use JTA must use JTA must use JTA
  TransactionManager available using ThreadLocal YES YES

Object Persistence
  Pluggable/Abstracted Global Identity (GUID) generator YES ?
  Pluggable/Abstracted ORM implementation YES through CMP through CMP
  Pluggable/Abstracted Query implementation YES
  Compile-time checking of Query construction YES
  Access to native ORM impl query language YES (HQL) through EJBQL
  Access to native SQL through JDBC through JDBC through BMP through BMP



wrapper

  Lookup Entity by GUID YES
through 
BMP/CMP through BMP/CMP

  Support for Entity and Dependent Objects YES YES YES
  Pluggable/Abstracted JVM & Session-level Cache support YES
  Declarative mapping of Constraints to Queries YES
  Passivate and Activate Queries YES
  Compile-time checked EntityGraph declarations YES

 
Remoting
  Remote method calls through IoC Commands through Proxies EJB/JCA EJB/JCA

Aspect Oriented Programming (AOP) Support

  Provided AOP Spring AOP
Depends on 
Annotations

  Third-party AOP integration PLANNED (JBoss AOP)
Container-provided 
(JBoss, etc)

Deployment and Configuration
  XML-based configuration of dependencies optional/limited YES YES YES
  Code-based (compile time checked) dependency 
configuration YES optional/limited
  Multi AppContext configurations per JMV IN DEVELOPMENT YES
  Annotation-based configuration PLANNED (through AOP) YES YES

Emphasized Patterns, Methodologies & Best Practices
  Focus on POJOs POJO neutral YES NO YES
  Lightweight Container Emphasis YES YES NO YES
  XML-centric deployment and configuration NO YES YES NO
  Focus on Compile-time checkable deployment / object-
wiring YES NO NO
  Model-driven business objects with base-class functionality 
(Entity) YES    
  Model-driven user-interaction models (Components) with 
stock fns YES    
  Dependency Injection (setter) some YES some some
  Dependency Injection (constructor) YES
  Configurable Factories YES YES
  Configurable Factories with complex "object wiring" YES
  IoC through Service Locator YES



  Use of Template pattern for reusable stock functionality YES

Security and Access Control
  XML-centric declarative Access Control points NO YES YES
  Annotation-oriented declarative Access Control Points PLANNED (through AOP) third-party?? NO YES
  Compile-time checked declarative Access Control Points YES NO NO?
  Model-driven declarative Access Control Points PLANNED
  Pluggable/Abstract access control point (permission) 
checking YES third-party??  
  Access Permissions integrated with UserProfile and 
Authentication IN DEVELOPMENT third-party??
  Data-oriented Constraints integrated with User Profile IN DEVELOPMENT
  Compile-time checked data-oriented access-control 
Constraints YES
  Automatic propagation of access control Contraints to 
Queries IN DEVELOPMENT

Localization / Internationalization
  Message Bundles integrated with (request context) Locale IN DEVELOPMENT YES
  Request context Locale integrated with User Profile IN DEVELOPMENT

Application Layer Infrastructure / Support
  Business components abstracted from Presentation code YES YES as EJBs as EJBs
  Lifecycle support for app-layer components / business 
objects YES YES as EJBs as EJBs
  Templated pattern impl for common use-case component 
wiring YES
  XML-oriented component/object wiring NO YES
  Compile-time checked component wiring YES
  Data-oriented Constraints auto-propagate between wired 
components IN DEVELOPMENT
  Selection-oriented Constraints auto-propagate between 
wired comp IN DEVELOPMENT

  Managed Components provide Presentation entry points YES
through Bean 
Factories EJB lookup EJB lookup

  Declarative navigation through Component hierarchies YES through Java Bean methods 

Presentation Layer Integration / Support

  Struts controller access to App Layer components
thru Template 
Actions/Forms

through Factory 
wrappers EJB lookup EJB lookup



  JSF controller access to App Layer components
thru Template Backing 
Beans

through Factory 
wrappers EJB lookup EJB lookup

  Model-driven generation of JSF backing beans PLANNED
  JSF controllers auto-generated (at runtime) from 
components PLANNED
  Swing presentation locally integrates with app-layer 
components IN DEVELOPMENT integration possible NO integration possible
  Rich Swing model integration with stock component 
interfaces IN DEVELOPMENT
  Swing presentation auto-generated (at runtime) from 
components IN DEVELOPMENT
  Model-driven generation of Swing controllers PLANNED
  WebWork integration  YES
  Tapestry integration YES

Unit Testing Integration / Support
  Base Unit Test classes to support context setup YES YES
  Base Test Suite classes to support context setup YES


	Goals and Objectives of the Airlift Framework
	Areas outside of the scope of Airlift
	Patterns, Methodologies and Best Practices within Airlift
	Integration with Java Technologies
	Component Functionality Matrix
	Comparison with other frameworks and related technologies.

